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ABSTRACT

A procedure for constructing one-error-correcting and two-error-
detecting systematic codes has been introduced by R.W.Hamming.
Some examples of n-error-correcting and (n+l) error-detecting
systematic codes for the cases where both the code length and n+1l
are powers of two are presented. The decoding scheme presented
in this report differs from Hamming's scheme in that the encoded
message will be extracted directly from the possibly corrupted re-
ceived code by a majority testing of the redundant relations within
the code. The general multinomial expansionformula for a Boolean
functionisdiscussed. A theorem about the relations satisfiedby the
highest or r-th degree coefficient of any vector or polynomial of a
defined submodule of a particular Boolean ring is proved, and forms
the basis for the general decoding principle,

CAMBRIDGE MASSACHUSETTS
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A CLASS OF MULTIPLE-ERROR-CORRECTING CODES AND THE DECODING SCHEME

I. INTRODUCTION

A procedure for constructing one-error-correcting and two-error-detecting system-
atic codes was introduced in a recent study by R. W. Hamming.1 It is the purpose of this report
to exhibit some examples of n-error-correcting and (n + 1) error-detecting systematic codes
for the cases where both the code length and (n + 1) are powers of two. The class of codes to be
considered was developed by D. E. Muller in his recent work.

The decoding scheme presented in this report differs from Hamming's scheme in
that the encoded message will be extracted directly from the possibly corrupted received code
by a majority testing of the redundant relations within the code. Hamming's scheme for n = 1
was dependent first on the location of a possible digit error in the code; secondly, on the correc-
tion of that digit; and lastly, on the extraction of the message from the corrected code. By cir-
cumventing Hamming's step of error location and correction, which is quite a severe problem
when n is not equal to one, we have arrived at a decoding scheme that makes a natural use of
the redundancy within the code as well as being conceptually simple and practical to implement.

In this report, some of the mathematical proofs of the methods discussed will be
avoided for the sake of brevity of exposition. A more detailed mathematical analysis will appear

elsewhere.

[I. SOME MATHEMATICAL PRELIMINARIES

A code having n binary digits may be considered the element of a space, consisting

of 2" elements of the form

L= e v =ty _y)

where

(f;= 0. 1) for (= 0,1, 2,...n = 1)

This space is technically an Abelian group if the sum of any two elements f and g in the space is

defined as follows:

(@g= (gl -, )O@Eye; -8 )= Ogyf @gp...f, Dgyy)

where fj ® gj is the sum modulo two of the binary digits fj and g for (j=0,1,2,...n=1). If
)

multiplication by the binary scalar a is allowed as

Finally, if the inner product operation
f-g=0pfp.. .0 1) By8p---8y)) = (oo I18yr - T 18y y)

for f and g in the module is introduced, the space is a Boolean ring. The prime operation is
defined to be

f'=f{®1
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for f in the ring, and where I is the identity vector (1,1,1,...1).

Into this space one may further introduce a norm or length of a vector as follows:

a
el = = 1,
i=1
where Z refers to ordinary addition. It is not difficult to see that the norm of the sum of two
elements f and g in the ring or ||[f @ g| is precisely the Hamming distance D(f, g) as defined
in Ref. 1.

Now let n the dimension of the vector space be a power of two or n = 2™, Leta
vector of this space be of the form

f=(f,f,...f )
01 My
where fj is a binary digit for (j = 0,1, ... Zm-l). Now the vector f may be clearly expressed as
f=fI1 ®f1, ®...f 1 . (1)
00 171 Moy 2™
where 1. is a unit vector with the digit one in j-th coordinate of the vector and zeros elsewhere
for (j =0,1,... Zm—l). Further, each unit vector I. can be determined as a product of m vectors
~ - 1 1 1 |l ie 4 :
from the set of 2m vectors x|, x,, Xgoow e X0 XYy X5 X3 e a X 1y where x, is a vector consisting
of alternating zeros and ones, beginning with zero; X, 1s a vector consisting of alternating zero

pairs and one pairs, beginning with a zero pair, and so forth, as follows:

x,=(01010101...01)
x, (0011001 1...11)
x3=(00001111...11)

xm=(00000000...ll) . (2)

i
If xk-’ is defined to be x"( for ik = 0 and X for i = 1, then by the rules of Boolean algebra,

R NN lm
Ij-xl Xy eooX , 3)
where
m k-1
j= = i, 2 with (i, = 0,1)for (j=0,1,...m - 1)
k=1 k k

Combining Eqs. (1) and (3), we have

2™-1 i) 1 im
f= E f.xl Xy eeX ' (4)
=0 I "

where i,,1,,.. 'i;n are the digits of the binary representation of j, and where the summation
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sign B is with respect to the sum operation @. Equation (4) is the canonical expansion of any
vector f in the Boolean algebra of 2™ dimensional vectors, consisting of binary digits.

If the identity xi =1® xj and the distritutive law of the algebra is used, Eq.(4) may
be expanded to obtain the following polynomial in the xj's:

f= g0® g, ® ... ® gmxm® gllexz@ "'gm-l,mxm-lxm®"'
@81 m*1%2 X, (4)
Equation (5) can be written more explicitly as
2
f=1{0,...000 Af((),...O)le) . ®Aaf0,...0)x_® Aaf(0,...0)x,x
m 172
1 m 12
m
®...® o f(0,...0) X%, % (6)
12. .. m
where
o k-1
f(i,,...i_)=1f. whenj= Z 1 2 fori, =0,1 ,
1 m ) k=l k 12

and the &'s are multiple partial differences, for example,

A1(0) = £(1,0,0,...)®(0,0,0,...0)
1

A £(0) = [£(1,1,0,...)® £(0,1,0,...)]®[£(1,0,0,...)® £(0,0,0,...)] .
12

and so forth. The polynomial representation in Eq. (6) of the vector f supplies the relations
between the coefficients of Eq. (5) and the scalars fj of Eq.(4) for (j=10,1,2,... Zm-l). This
definition of the A's will be expanded in Sec. V.

III. THE GENERATION OF THE MULTIPLE ERROR ALLOWING CODES

Suppose that the dimension of the space considered in Sec. Il is 2™, Consider the
set q);n of all polynomials of the form (5) of degree less than or equal to r where r ¢ m. Each

such polynomial must have the form

g,®gx ®...Dg x ®... ®g12...rxl"'xr®“' ®¢g

m-r, m-r+l,...m

Xoor*mer+l " *m * (7)
and the sum of any two such polynomials is a member of the same set. This implies that (I):’
the set of all polynomials of type (7) or of degree less than or equal to r forms an Abelian group
or submodule of the Boolean ring of 2™ dimensional vectors. Since ¢T is a module, the
Hamming distance between any two elements of ¢:‘ is the norm of a third element of (b:.n This
fact was exploited by D. E, Muller” in proving his Theorem 25. Muller's Theorem 25, in our
terminology, may be expressed as follows:
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Theorem A: — The norms of all non-zero vectors f of q);n satisfy

It} 22™ " for (m=0,1,2,...)and r<m

We shall not prove this theorem in this section. It suffices to say that, with respect to our
terminology, Muller proved the theorem by an induction on m, holding m - i constant, and the
properties of the Hamming distance.

By the above theorem there is at least a distance 2™ T between two elements of (I):1
and, as a consequence, there is an open Hamming sphere of radius Zm-r-l about each element
of Q;n in (I):n (the whole vector space) which does not intersect any other such sphere. This
means that it is possible to associate each element of such a sphere with the element defining
the sphere or what is the same to associate an element of (I);n which is less than a distance
2™°T-1 trom an element f of (ﬁ;n with f,

In order to illustrate how a message may be coded into an error-detecting code of
the type described above, consider the following example: Let m = 4 and r = 1, by (7) the

vectors of (b? are of the form
8o @ g x; D g,x, Dgyxy @ gyxy - (8)
Let the message consist of the five binary digits (gO. g, 8,83 g4). The code space (I)T may be

regarded as generated by the four vector X » Xp0 Xgu Xy and the identity vector I which may be

written explicitly as follows:

x,=(0101010101010101)
x,={0011001100110011)
x3=(0000111100001111)
Xg= (00000000111 11111)

I =(1111111111111111) " (9)

The 32 vector codes of ¢‘; can be obtained by scalar multiplication of the vectors of (9) by the
message digits 80 8y 8,831 84 in accordance with (8). For example, the message (01 10 0)
has the code vector g,x, ® g,x, or

(0110011001100110)

Each of the 32 codes will be a distance of at least eight from each other.

In order to practically generate the above code, one should note that the vector X,
is the sequence of digits generated by the least significant binary stage Bl of a binary counter
of scale sixteen; X, is obtained from the second stage BZ; X3 from the third stage B3; and X,
from the final stage B4. as the counter goes through one period of its operation. If the message
(g, 8, 8, 85: 84) is stored in a binary register with stages Ay A, A, Ay, A, then the switching

function
C-= AO ® AlBl ® AZBZ 0) A383 ® A4B4

will generate the code sequentially during one period of operation of the binary counter.
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If one of the above codes of é: is corrupted during transmission so that no more
than three errors are made, it is evidently possible by the previous discussion of this section
to somehow extract the original message from the corrupted received code. The method by
which this extraction may be accomplished will be shown by example in the next section and in
general in the last section. It should be clear from the above example how the vectors of (i);n

may be generated for arbitrary r and m where r ¢ m.

IV. DECODING CORRUPTED CODES OF @;n BY A MAJORITY TESTING
OF REDUNDANCY RELATIONS

Let us first consider the coding space ¢i By (7), the vector of this space has

the form
gol®glxl@gzxz®g3x3 . (10)

The message will consist of the four binary digits (gO, g1 & g3), and the generating vectors of

the space are

-(01010101) ,
=(0o0110011)
x3=(00001111)
I =111y . (11)

&N —

By (6) we have the following set of relations for the message digits gJ in terms of fk, the code

digits.
gg = f(0,...0) =1, ‘ l:;f(o...):fo-Bfl@fZG)f}:O ;
g‘_?f(()”_):fo@fl , RA}{(U"');‘(_)®{1®{4®{5:0 ;
ga:zjr(o...)_foe)fZ i ZA}f(o...):fo®f2®f4@f6 0
7
g3=§r(0...);f0®f4 ; lj3f(0...).—i::uri:o ; (12)

By (12) theve are four relations which g, satisfies,
g =@M =, @ =1, OLe,O[OOf Of ®Of
By substituting the second and third relations into the fourth relation, we have
£)°8,0g Of, 0L =001, @f, =1, Of,
Thus we obtain the four independent and disjoint relations for g!,
g =@ =, D=1, Of; =, Dfy

These four relations are disjoint in the sense that no two of the relations have variables in
common. In a similar manner, we may obtain four independent and disjoint relations for both

g, and g3 50 that g’ &, g3 may be expressed as
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g =@, =1, D, =1, D, =1 O, .
8@ =, ®f=1,0f =, ®f,
g =fg®f, =1, @f =1, DI =1, D

Let us now suppose that the received code is the vector (fo. fl' “E % f.,). If there were
no error in transmission of the code, all of the above relations would hold. If there vere one
error, three out of four of the relations would hold. If there were two errors, at least two of
the gj's would have two out of four incorrect relations. Then g+ 8, g3 may be determined
uniquely if one or no error occurred during transmission, and two errors may always be
detected by making a majority decision test on the arithmetic sum of the values of the four
relations for each g. (j = 1,2, 3). In order to state this criterion more explicitly, let the values

of the four relations for gj be denoted by r.,,r,,, rj3. rj4 for (j = 1,2,3), and let Sj be the arith-

J )
metic sum of rjl' er' rj3. rj4 or

4
8.2 ¥ P,
J o B

Then the majority decision test for gJ is

.= 0 if 0<S, <2
. =5
g‘i is indeterminate if SJ =2
gj:l if 2<Sjs4for(j=l.2.3) . (13)

With the assumption that the received code is no more than two digits in error,
the majority test (13) will determine €8, 83 uniquely for only one or no errors, and reject
the code as meaningless in the case of two errors. In the case of one error or less, g, 8, 83
may be assumed now to be determined; it remains to determine g,. In order to find gy» note
that if, as g, 8, 85 are found, the vectors g% 85X, 83Xy are added successively to the
received vector, by (10) we will end with either the vector gyl in the case of no error or with a

vector of distance one from gol. Thus to detect g the following majority decision test will
suffice:

7
g0:01f2m<4 ’

1if T m, >4 (14)
i=0 *

where m, are the digits of the code after extraction of digits g8, 84 in accordance with the
above procedure.

The above method of decoding may be illustrated by the following example: Suppose
that the message sent was (1 0 1 1), and that during transmission an error was made in the fifth
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digit of the original code (1 1 000 0 1 1) so that the received code had the form (1100101 1).
We first test for g8 83 by (12) and find g " 0, g, = 1 and g3 - 1. Using (11), we add
g%, ® g%, ® g3X3 to the code, obtrining

001010101)®(00110011)®@O0001111)@(11001011)
=(11110111)= (mpm;,m,,...my) .
Finally, by (14)

7
gO:l , sincc X m;=7>1

Although @? is none other than an example of a set of one-error-correcting and two-
error-detecting codes of the type described by Hamming in Ref. 1, the method of decoding con-
sidered above is different. Our procedure of decoding is advantageous in that it may bc gener-
alized in a natural way to include any of the coding spaces q):‘ of Sec.Il. Before we consider
this generalization by further examples, let us note a tabular way of representing the redundancy

relations (12).
If the digits or variables of each relation are connected by lines for each of the
vectors X s Xys X5 @S

~~ —~ —~ N

xp=(0 101010

T P2 S
XZ =(0 01 1001 1) i
x3 = (0/6/0 B 1 1 1 1) ’ (15)

the relations of (12) become almost self-evident by their simplicity with respect to order and
symmetry. This simplicity makes it possible to discover redundancy relations for more
general spaces q)rrn without resorting to an algebraic approach similar to the one used to obtain
(12).

As a second example of our decoding procedure, consider the coding space (i)?
introduced in the latter part of Sec.IIl. Each vector of this space has the form of (8), where
the generating vectors are X o Xpn Xgu Xy and I of (9). The first-degree redundancy relations may
be determined in a manner similar to the above example and represented in a tabular manner

similar to (15) as follows:

xl=(0101010101010101)

A KXTN S P]NN N o<
x,=(0C 011001 1dd11060171) ,
————— | —————
x3=(6000111100/001111),
///m
Xg=(000 0000001 1111 1171) . (16)

For instance, the eight independent and joint relations for g, are
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81=f2i@f21+l for (i=0,1,...7) .

If the eight values of the redundancy relations for gj are labeled rjl' er’ S

i8 for (j = 1,2,3,4),

and Sj is defined by

8
S.= T r..
b it

then, by an argument similar to that used in the previous example, the majority decision test

for gj is as follows:

.= 0 if 0<S, <4 ,
By ' j
gj is indeterminate if SJ. =2 |,
g = ! if 4<S;<8 for (j=1.2,3,4) . {(i7)

In order to determine Bgr We first add the determined vectors g.x. to the ireceived
message, assuming, of course, that no gj is indeterminate, and we are left with the zero-degree
polynomial (P;. possibly corrupted by errors. If there had been no errors, there would be

sixteen zero-degree relations which go satisfies, or

= ;. for (= 0; 1s2se5:15) 5
8o = ™ G )

where, as in (14), m‘j are the digits of the code after extraction of g, 8, 83 and g4 Thus go

i5 determined by the majority decision test

15
g0=0 if i}jomi<8 )
15
=1if T m>8 . (18)
i=0

For the above example, three errors may be made in code and the correct message
obtains. If four errors are made, some of the message digits are indeterminate. It is of some
interest to note that, for some cases of five errors in the code, the message may be extracted
correctly. For example, suppose that the message was (0 0 0 0 0) and that the received code
was (1100101010000000). Clearly, the correct message will be extracted from this
code by the above procedure.

As a final example of coding and decoding scheme, consider q); This space is
generated by X o X5 X0 Xy of (16) and I, as well as the quadratic variables X X0 X Xg0 XX 00X, Xg,
XX 41 XX 4 The latter six vectors may be presented in the following tabular manner:

UNCLASSIFIED



UNCLASSIFIED

P S P U e e
xx,=(C0 6100616061000 1 |,

m@
xlx3=(000001010000 1 01) ,

(o c000O0OO0OO0OO0OT1 0110110 1) ,

xlx4=
x2x3=(00é§;8§il(508050i1),
XXg=(000000000601 106011 |,
" m
S—— Sl el
X3Xg = (000 0000000001111 . (19)

The messages for this example will be 11 binary digit numbers of the form (go, g,: 858384 815
€13 814823824 g34). Each code will be sent as a vector of the form

B0 D g x| @ X, @ g3x; D pgxy @ g),%%, @ g)3%%X3 @ g 4% x4 ® gp3%,%;
® 84%,%4 © B34%3%,

The second-degree coefficients gij of the received message are extracted first with
a majority decision based on the redundancy relations illustrated in (19). Next, assuming that
no indeterminacy occurred in the second-degree coefficients, the vectors g)Jxli are added to
the received code, after which we are left with & residual code from which the first-degree
coefficients g, &, 83 84 May be extracted by test (17). Finally, the zero-degree coefficient
gy may be determined by test (18) after adding the vector 81X BpX 0 B3X3i BgXy to the residual
code.

This example 1llustrates the general principle of decoding the particular class of
codes under consideraiion. The highest degree coefficients of a received code are extracted
first; then these terms of the polynomial are subtracted out of the code, thereby leaving a
residual code of the next lower degree than the original code in the special case of no errors.
The operation is repeated over and over on the successive residual codes until either an indeter-
minacy occurs or until g9 1s extracted.

The relations of (19) illustrate the fact that there are four redundancy relations
each of four variables for the second-degree coefficients gij' For example, the redundancy
relations for g, are

8127 04 @la5 Ol Ofyyyy for (1=0,1,2,3) . 140)

In general, these relations will allow only one error; two errors will lead to indeterminacy.
This is another example of Hamming's one-error-correction and two-error-detection codes.
It should be noted that the majority decision tests used in the above examples were,

in general, overdeterminate. For instance, in the first example, if one error had been made,
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no more than one error would remain in the residual code after determining g, 8, B3 On the
other hand, if two errors had occurred, ‘he process of extraction would have ended before o
could be determined. Thus a test of cnly the following type would be necessary:

gp =0 if mn+miz+mi3$1 ,

g1=l if m;, +m, +m

2 24

i3

where 1),1,,i5 are any three distinct numbers between zero and seven, inclusive. Refinements

such as this, however, do not destroy the validity of the previous tests.

V. THE GENERAL DECODING PRINCIPLE

To study the general decoding scheme, illustrated by example in Sec. IV, it will be
necessary to consider the general multinomial expansion formula (6) more carefully. Let us
first define the multiple differences, used in (6), in more detail.

As in (6), f(il. . ..im) is defined as

2 k-1
[ e i) = 1) when - z i 2 for (1, = 0,1} . (21)

m k=1
The general multiple partial difference

A f(i,,iy, .0l )
K.k Tk 1’ 2 m

1s defined inductively as

of(ip...i )= f(il....xk_l,xk(D l'ik+l""‘m)®f('l""1k""l )

Kk m
A f(ip...i_)= p;;l fineeiy i @ L, ee.i)
Kyl - ook, . S T ! kool Bp Bl .
p-1 , ,
+ leA.kp-l 1'(11.... m) 5 (22)

With these definitions it is possible to prove by induction the validity and uniqueness of expancion
(6) for any Boolean algebra of m variables and, in particular, for the Boolean algebra of B
dimensional vectors as described in Sec 1I.

One evident consequence of (21) is the identity
f(ll....lk_llk ® l,ikH,...im) = fi+(-l)1k PLED I (23)

By the use of (23) it is possible to write (22) explicitly in terms of the fi as

10
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ﬁf(il....im) =1 @£,y iy k-1

and
Zp'l zp'l
a fi,...i )= £ £ ® T f i, k-1
kpokgeon ok i i=1 Ji i=1 Jie(-1) Kp2 P
where
p-1 k-1 i k-1
a flij..vi )= E f and j #j+-1) p2P
Kk, k k m i=1 i 1 8
1" "2 p-1
for (i,s=1,...2°P7" . (24)

We are now in a position to prove the following fundamental theorem on which the general
decoding principle of the class of codes under consideration rests.
Theorem B: — Each highest or r-th degree coefficient of any vector or polynomial f of @:‘

satisfies exactly 2m-r disjoint relaiions where each relaiion has precisely the form

2T
f. ,
k=1 'k
where ik are distinct numbers from the set (0,1, 2,... 2™M 1ifor (k= 1;.2:5:5 Zr). Disjointness

of relations means that no two relations have variables fl in common.

Proof: — Choose m and r. By (6), (7) and (24), the highest degree coefficients for an f of

m
4) are
r

T
r 2
g = a fo,...0)= & £, (25)
ky-ooky kKooK i=1 J

where kj are distinct integers from the set (1,2,...m)for (j=1,...r), and _ji are distinct
integers from the set (0, 1,... 2 1)for(i=1,2,... Zr). Moreover,
a f(0,...0)=0 (26)
kl. . ‘kr"an‘ e ny

fort > 1, and k. and n, are distinct integers from the set (1,2,...m) for (j = 1,...t).
Let kl' kz. .o kr be a distinct set of integers from the set (1,2,...m). Then, by
(26) and (22),

r r
Py f(0,...0) = A £f(0,...0) @ iy £(0,...1,...0)=0 ., (27)
k k

1k, 1"'kr

where n; is 2ny one of the m - r integers from the set (1,2, ...m) which is distinct from the
integers (kl, kz, i oia kr)’ Thus, by (24) and (25), we have exhibited m - r new relations of the

11
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form required by the theorem. Each of these new relations is distinguished by the fact that the
digit one appears only in the nl-th position of the function f(il. .o .im) operated on by

Now define f[x.l, L PO nt] to be f(i , iy .. .0 ) with iy =1 for k = n;,n,,...n and
i = 0 otherwise. The theorem will be proved by induction on the subscript of n. Assume
therefore that

r+s-1 r
A f(0,0,...0) = P\ £(0.0,...0)
klk2 .krnln2 «Ng kl"'kr
r
® a floj.n,.en 4] (28)
kl“'kr

Now, by (22) and (26) and the induction hypothesis (28),

r+s r+s-1

P\ f(0,0,...0)= & A £(0,0,...0) ,
k]...kn...n n Kssuo Ko Myws o0
rl < s 1 r 1 s-1

r r
= A A £(0,...00® A f[nl,...ns_l] ,

n k,...k k,...k

s 1 r 1 r
r r
= A f(0,0,...0)® A f[nl....n l] ,

k k k S-
| RS o 1 r

® a f[nS] ® a f[nl, ns] =0
k o K k .k

1 r 1 r
Now, by (27) and (28), the two middle terms are equal to
r
A f(0,0,...0) ,
Ky,.o.k
1 r
and therefore their sum modulo 2 is zero. Hence
r+s r r
a f(0,...0)= A £(0,...00® o f[nl....ns]=0 ;
ks sn K.,...K Kyoook
i s 1 I 1 r

and the induction is complete. The theorem is proved when we observe that the relation

12
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r+s -r
A f(0,...0) = 0 contributes <m ) distinct relations
kl...n s
s
§ Ak f(O....O):k Ak f[nl.nz...ns] i
CRRL ERRL
me-r

since there are ( )ways of choosing s integers from m - r integers. Using all the

s

relations (26) for the particular set kl' . .kr andt = 1tot=m - r and the relation (25), we get

m-r m-r
1+ = < ): g
t=1 t

distinct relations for g K K- Since these relations exhaust all variables fi , the
1"72""" " 'r k
theorem is proved.

The above theorem shows that the generalization of the decoding prirciple, discussed
in the last section, obtains. The majority decision test for the general case can clearly be used
to extract the r-th degree coefficients of l:_n , where the relations used for the test are the 2™
relations of Theorem 3. The (r — 1)-th degree coefficients are then extracted the same way
after the determined r-th order terms have been subtracted or added into the received code.
This process is continued for the r — 2, r — 3, ...degree coefficients until the message is

extracted or an indeterminacy is reached.

VI. CONCLUSIONS

There are two or three generalizations of the codes and the methods of decoding. In
Ref. 2, Muller discusses a possible set of codes other than binary length of 2™, Another gener-
alization obtains where the polynomials are considered over a field other than characteristic
two; i.e., ternary codes, etc. Lastly, it appears from some work of T. A. Kalin that an error-
correction scheme of the type considered by Hamming may generalize to the coding space @:n

in a rather natural way.
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